This study aimed to screen the hub gene for predicting the prognosis of patients with stomach adenocarcinoma (STAD). The RNA-sequencing expression data and clinical data of STAD were collected from the cancer genome atlas. The R package "limma" was performed to ascertain the differentially expressed genes (DEGs) between the relapse group and non-relapse group, and the DEGs between the survival dead status group and survival alive status group were screened. The overlapping genes between 2 DEGs sets were identified by the Venn diagram. Many different bioinformatics analysis methods were performed to analyze the importance of hub genes. One gene signature, IGFBP1, was extracted. The KM plot indicated that STAD patients with low IGFBP1 mRNA expression have a shorter overall survival time. The top 100 co-expression genes of IGFBP1 were mainly enriched in complement and coagulation cascades, epithelial cell signaling in Helicobacter pylori infection, and Wnt signaling pathway. Immune infiltration analysis indicated IGFBP1 may inhibit immune cell infiltration in tumors by infiltration and immune escape, leading to tumor metastasis and progression. The bioinformatics analysis results indicate that IGFBP1 can be used as a tool to evaluate the mortality risk of patients with STAD.
Read full abstract