The layout of the exterior retaining walls and external thermal insulation demands often introduce an eccentricity between the central axes of the beams and columns, leading to what is termed as an eccentric beam-column joint. Such the beam eccentricity is a key factor in shear failures within the joint region. This study addresses the negative impact of beam eccentricity on the shear capacity of reinforced concrete (RC) eccentric beam-column joints. Current research indicates that in the five prevailing shear capacity formulas of RC eccentric joints, adverse effects are primarily accommodated by either reducing the joint’s effective width ( bj) or implementing an eccentricity influence factor. The study challenges the validity of these approaches by dissecting the impact of singular and interactive factors, including. Eccentricity (2 e/ bc), beam-to-column width ratio ( bb/ bc), and the column’s aspect ratio ( hc/ bc). It was observed that while the influence of 2 e/ bc is generally well-accounted for, the effects of bb/ bc and hc/ bc are not adequately considered in the Chinese code and ACI-318. Leveraging the softened strut-and-tie model and insights from these examinations, a refined formula for determining the shear capacity of eccentric joints is introduced. This formula incorporates the detrimental effects of beam eccentricity through a newly conceptualized eccentric influence factor, which is a function of both 2 e/ bc and bb/ bc. Compared to existing models, this proposed formula also factors in the beam-to-column depth ratio and the longitudinal reinforcement in the middle of column section. Validation against experimental data from 26 eccentric joints demonstrates that the proposed formula yields predictions with the closest proximity to actual test results and the least variability compared to the five established formulas. This approach to considering the effects of e/ bc and bb/ bc proves to be slightly more accurate than Zhou’s model, making it a promising alternative for practical applications.