Scouring leads to soil loss around piles, which, in turn, changes the ground-vibration characteristics and influences the seismic performance of bridges. In this study, the Xiang’an Bridge was used as a reference for constructing a large shaking-table test model to investigate the dynamic characteristics of the pore-pressure ratio of saturated sandy soils, accelerations, and bending moments of the piles, as well as the horizontal displacements of the pile-top at scouring depths of 10, 20, and 32 cm, with ground-vibration intensities ranging from 0.10-0.45 g. The results indicated that as the scour depth increased, the pile acceleration of the group piles increased and changed abruptly at the variable cross-section and soil-stratum interface. The peak values of the horizontal displacement of the pile-top and bending moment of the pile exhibited an increasing trend. As the ground-shaking intensity increased, the pore-pressure ratio of the saturated sandy soil, pile acceleration of the group piles, horizontal displacement of the pile-top, and bending moment of the pile body gradually increased, whereas the base frequency of the pile foundation gradually decreased. This study can serve as a reference for the seismic design and reinforcement of scour bridges in areas prone to seismic activity.