Vehicle re-identification (Re-ID) is a critical component of the autonomous driving perception system, and research in this area has accelerated in recent years. However, there is yet no perfect solution to the vehicle re-identification issue associated with the car’s surround-view camera system. Our analysis identifies two significant issues in the aforementioned scenario: (1) It is difficult to identify the same vehicle in many picture frames due to the unique construction of the fisheye camera. (2) The appearance of the same vehicle when seen via the surround vision system’s several cameras is rather different. To overcome these issues, we suggest an integrative vehicle Re-ID solution method. On the one hand, we provide a technique for determining the consistency of the tracking box drift with respect to the target. On the other hand, we combine a Re-ID network based on the attention mechanism with spatial limitations to increase performance in situations involving multiple cameras. Finally, our approach combines state-of-the-art accuracy with real-time performance. We will soon make the source code and annotated fisheye dataset available.