Purpose Heterozygous variants of IMPDH1 are associated with autosomal dominant retinitis pigmentosa (adRP). The current study aims to investigate the characteristics of the adRP-associated variants. Methods IMPDH1 variants from our exome sequencing dataset were retrieved and systemically evaluated through multiple online prediction tools, comparative genomics (in-house dataset, HGMD, and gnomAD), and phenotypic association. Potential pathogenic variants (PPVs) were further confirmed by Sanger sequencing and segregation analysis. Results In total, seven heterozygous PPVs (six missenses and one inframe) were identified in 10 families with RP, in which six of the seven might be classified as pathogenic or likely pathogenic while one others as variants of uncertain significance. IMPDH1 variants contributed to 0.7% (10/1519) of RP families in our cohort, ranking the top four genes implicated in adRP. These adRP-associated variants were located in exons 8–10, a region within or downstream of the CBS domain. All these variants were predicted to be damaged by at least three of the six online prediction tools. Two truncation variants were considered non-pathogenic. Hitherto, 41 heterozygous variants of IMPDH1 were detected in 110 families in published literature, including 33 missenses, two inframes, and six truncations (including a synonymous variant affecting splicing). Of the 35 missense and inframe variants, most were clustered in exons 8–10 (77.1%, 27/35), including 18 (51.4%, 18/35) in exon 10 accounting for 70.9% (78/110) of the families. However, truncation variants were enriched in the general population with a pLI value of 0 (tolerated), and the reported variants in patients with RP did not cluster in specific region. Conclusions Our data together with comprehensive analysis of existing datasets suggest that causative variants of IMPDH1 are usually missense and mostly clustered in exons 8–10. Conversely, most missense variants outside this region and truncation variants should be interpreted with great care in clinical gene test.
Read full abstract