A pathological hallmark of Alzheimer's disease (AD) is the region-specific accumulation of the amyloid-beta protein (Aβ), which triggers aberrant neuronal excitability, synaptic impairment, and progressive cognitive decline. Previous works have demonstrated that Aβ pathology induced aberrant elevation in the levels and excessive enzymatic hydrolysis of voltage-gated sodium channel type 2 beta subunit (Navβ2) in the brain of AD models, accompanied by alteration in excitability of hippocampal neurons, synaptic deficits, and subsequently, cognitive dysfunction. However, the mechanism is unclear. In this research, by employing cell models treated with toxic Aβ1-42 and AD mice, the possible effects and potential mechanisms induced by Navβ2. The results reveal that Aβ1-42 induces remarkable increases in Navβ2 intracellular domain (Navβ2-ICD) and decreases in both BDNF exons and protein levels, as well as phosphorylated tropomyosin-related kinase B (pTrkB) expression in cells and mice, coupled with cognitive impairments, synaptic deficits, and aberrant neuronal excitability. Administration with exogenous Navβ2-ICD further enhances these effects induced by Aβ1-42, while interfering the generation of Navβ2-ICD and/or complementing BDNF neutralize the Navβ2-ICD-conducted effects. Luciferase reporter assay verifies that Navβ2-ICD regulates BDNF transcription and expression by targeting its promoter. Collectively, our findings partially elucidate that abnormal enzymatic hydrolysis of Navβ2 induced by Aβ1-42-associated AD pathology leads to intracellular Navβ2-ICD overload, which may responsible to abnormal neuronal excitability, synaptic deficit, and cognition dysfunction, through its transcriptional suppression on BDNF. Therefore, this work supplies novel evidences that Navβ2 plays crucial roles in the occurrence and progression of cognitive impairment of AD by transcriptional regulatory activity of its cleaved ICD.
Read full abstract