Regulators of G protein signaling (RGS) proteins finetune signaling via heterotrimeric G proteins to maintain physiologic homeostasis in various organ systems of the human body including the brain, kidney, heart, and the vasculature. Impaired regulation of G protein signaling by RGS proteins is implicated in the pathogenesis of several human diseases including various forms of cardiomyopathy such as hypertrophic cardiomyopathy and dilated cardiomyopathy (DCM). Both genetic and non-genetic changes that impinge on G protein signaling in cardiomyocytes are implicated in the etiology of DCM, and there is accumulating evidence that such genetic and non-genetic changes affecting G protein signaling in cell types other than cardiomyocytes could serve as a DCM trigger in humans. This review discusses and highlights mammalian RGS proteins and their roles in cardiac physiology and disease, with specific focus on the current understanding of the etiology of DCM and the pathogenic roles of RGS proteins that are prominently expressed in the cardiovascular system. Growing evidence suggests that defects in G protein regulation by RGS proteins in the cardiovascular system likely contribute to cardiomyocyte structural damage and decreased contractile function that hallmark DCM. Further studies that enhance the understanding of the dynamics of G protein regulation by RGS proteins in several cell types in the myocardium and the vasculature are critical to gaining more insight into the etiology of DCM and heart failure, and to the identification of novel therapeutic targets.
Read full abstract