This study aimed to explore the molecular mechanism of neuronal cell adhesion molecule (NrCAM) by regulating Th17 cell differentiation in the pathogenesis of Graves' disease (GD). Naïve CD4+ T cells were isolated from peripheral blood mononuclear cells of GD patients and healthy control (HC) subjects. During the differentiation of CD4+ T cells into Th17 cells, NrCAM level in GD group was improved. Interference with NrCAM in CD4+ T cells of GD patients decreased the percentage of Th17 cells. NrCAM overexpression in CD4+ T cells of HC subjects increased the percentage of Th17 cells and upregulated p-IκBα, p50, p65, c-Rel protein expressions, and NF-κB inhibitor BAY11-7082 partially reversed NrCAM effect. NrCAM overexpression promoted the degradation of IκBα, and overexpression of small ubiquitin-related modifier 1 (SUMO-1) inhibited IκBα degradation. NrCAM overexpression reduced IκBα binding to SUMO-1. During Th17 cell differentiation in HC group, NrCAM overexpression increased IL-21 levels and secretion, and IL-21 neutralizing antibody reversed this effect. IL-21 level was decreased after p65 interference in CD4+ T cells of HC subjects. p65 interacts with IL-21 promoter region. In conclusion, NrCAM binds to SUMO-1 and increases phosphorylation of IκBα, leading to activation of NF-κB pathway, which promotes Th17 cell differentiation.