Abstract

(IL)-17A, the effective factor of Th17 cells, acts an important pathological role in the pathogenesis of psoriasis. Notch1/hairy and split 1 (Hes1) and PI3K/AKT signaling pathways are interpenetrated and involved in Th17 cell differentiation and IL-17A production. In this present study, we used imiquimod (IMQ)-induced mouse psoriatic skin inflammation to explore the possible mechanism of Notch1/Hes1-PTEN/AKT/IL-17A feedback loop in psoriasis by employing AKT inhibitor LY294002 as an intervention with the methods of flow cytometry analysis, reverse transcription-quantitative polymerase chain reaction, western blot, co-immunoprecipitation, and immunofluorescence. First, LY294002 inhibition can obviously alleviate the mouse psoriatic skin inflammation both in skin structural and histopathological characteristics, which is similar to the changes found in IL-17A antibody-treated mice. Additionally, the interaction between Notch1 intracellular domain (NICD1) and nuclear factor kappa B (NF-κB) activator 1 (Act1) was demonstrated. LY294002 interruption resulted in consistent changes in expression levels of key signaling molecules both in Notch1/Hes1 and PI3K/AKT signaling pathways in a time-dependent manner. Moreover, chloroquine (CQ) can partly reverse the inhibitory effects of LY294002 on the Notch1/Hes1-PTEN/AKT/IL-17A feedback loop by affecting Notch1 ubiquitination and lysosomal degradation. The present study showed that LY294002 can exert the inhibitory effect on Notch1/Hes1-PTEN/AKT/IL-17A feedback loop to regulate Th17 cell differentiation and IL-17A function in the process of psoriasis, which provides a new possible therapeutic strategy for psoriasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.