Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental condition marked by challenges in social communication, sensory processing, and behavioral regulation. The delayed diagnosis of ASD significantly impedes timely interventions, which can exacerbate symptom severity. With approximately 62 million individuals affected worldwide, the demand for efficient diagnostic tools is critical. This study introduces a novel framework that combines a White Shark Optimization (WSO)-based feature selection method with a Bidirectional Long Short-Term Memory (Bi-LSTM) classifier for enhanced autism classification. Utilizing the WSO technique, we identify key features from autism screening datasets, which markedly improves the model's predictive capabilities. The optimized feature set is then processed by the Bi-LSTM classifier, enhancing its efficiency in handling sequential data. We comprehensively address methodological challenges, including overfitting, generalization, interpretability, and computational efficiency. Furthermore, we conduct a comparative analysis against baseline algorithms such as Neural Networks, Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) networks, while also employing Particle Swarm Optimization (PSO) for feature selection validation. We evaluate performance metrics, including accuracy, F1-score, specificity, precision, and sensitivity across three ASD datasets: Toddlers, Adults, and Children. Our results demonstrate that the WS-BiTM model significantly outperforms baseline methods, achieving accuracies of 97.6%, 96.2%, and 96.4% on the respective datasets. Additionally, we implemented leave-one-dataset cross-validation and confirmed the statistical significance of our findings through a paired t-test, supplemented by an ablation study to detail the contributions of individual model components. These findings highlight the potential of the WS-BiTM model as a robust tool for ASD classification.