Abstract

ABSTRACTThe endocannabinoid (eCB) signaling system is robustly expressed in the cerebellum starting from the embryonic developmental stages to adulthood. There it plays a key role in regulating cerebellar synaptic plasticity and excitability, suggesting that impaired eCB signaling will lead to deficits in cerebellar adjustments of ongoing behaviors and cerebellar learning. Indeed, human mutations inDAGLαare associated with neurodevelopmental disorders. In this study, we show that selective deletion of the eCB synthesizing enzyme diacylglycerol lipase alpha (Daglα) from mouse cerebellar Purkinje cells (PCs) alters motor and social behaviors, disrupts short-term synaptic plasticity in both excitatory and inhibitory synapses, and reduces Purkinje cell activity during social exploration. Our results provide the first evidence for cerebellar-specific eCB regulation of social behaviors and implicate eCB regulation of synaptic plasticity and PC activity as the neural substrates contributing to these deficits.Abstract FigureGraphical abstract.Cerebellar anatomy, morphology of Purkinje cells, localization, density, and spontaneous activity of excitatory and inhibitory synapses are normal in cerebellar-Purkinje-cell-specific Daglα KOs. However, endocannabinoid-dependent short-term synaptic plasticity (DSE and DSI) and activity of Purkinje cells in lobe VI during social exploration are dramatically reduced, and the KO mice exhibit alterations in sensorimotor coordination, deceased social preference, and increased anxiety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.