ContextIn Europe, policy measures are starting to emerge that promote multifunctional farming systems and delivery of ecosystem services besides food production. Effectiveness of these policy instruments have to deal with ecological, economic and social complexities and with complexities in individual decisions of local actors leading to system shifts.ObjectiveThe objective of this paper is to discover the most important social and/or economic drivers that cause farm systems to shift between a monofunctional (providing food) and a multifunctional state (providing food and natural pest regulation).MethodsUsing a cellular automata model, we simulated decisions of individual farmers to shift between a mono-and multifunctional state through time, based on their behaviour type and on financial and social consequences. Collaboration of multifunctional farmers at a landscape scale is a precondition to provide a reliable level of natural pest regulation.ResultsCosts of applying green infrastructure was an important driver for the size and the conversion rate of shifts between mono-and multifunctional farming systems. Shifts towards multifunctional farming were enhanced by a higher motivation of farmers to produce sustainably, while shifts (back) to a monofunctional state was enhanced by a low social cohesion between multifunctional farmers.ConclusionsThese results suggest that in order to develop a multifunctional farming system, individual farmers should act counterintuitively to their conventional farming environment. To maintain a multifunctional farming system, social cohesion between multifunctional farmers is most relevant. Financial aspects are important in both shifts.
Read full abstract