The insulin-like growth factors (IGFs) are important in the regulation of normal fetal musculoskeletal growth and development, and their actions have been shown to be modulated by IGF binding proteins (IGFBPs). Because the anatomical distribution of IGFBPs is likely to dictate IGF bioavailability, we determined the cellular distribution and expression of IGF-I, IGF-II, and IGFBP-1 to IGFBP-6 in epiphyseal growth plates of the fetal sheep, using immunocytochemistry and in situ hybridization. Little mRNA for IGF-I was detectable within the growth plates, but mRNA for IGF-II was abundant in germinal and proliferative chondrocytes, although absent from some differentiating chondrocytes and hypertrophic cells. Immunohistochemistry for IGF-I and IGF-II showed a presence of both peptides in all chondrocyte zones, including hypertrophic cells. Immunoreactive IGFBP-2 to -5 were localized within the germinal and proliferative zones of chondrocytes, but little immunoreactivity was present within the columns of differentiating cells. IGFBP immunoreactivity again appeared in hypertrophic chondrocytes. IGFBP mRNA in chondrocytes of the epiphyseal growth plate was below the detectable limit of in situ hybridization. However, low levels of mRNAs for IGFBP-2 to -6 were detected by the reverse transcriptase polymerase chain reaction. A co-localization of IGFBPs with IGF peptides in intact cartilage suggests that they may regulate IGF bioavailability and action locally. To test this hypothesis, monolayer cultures of chondrocytes were established from the proliferative zone of the growth plate, and were found to release immunoreactive IGF-II and to express mRNAs encoding IGFBP-2 to -6. Exogenous IGFBP-3, -4, and -5 had an inhibitory action on IGF-II-dependent DNA synthesis. IGFBP-2 had a biphasic effect, potentiating IGF-II action at low concentrations but inhibiting DNA synthesis at equimolar or greater concentrations relative to IGF-II. Long R3 IGF-I, which has a reduced binding affinity for many IGFBPs, was more potent than native IGF-I in promoting DNA synthesis by chondrocytes. Our findings suggest that locally produced IGF-II and IGF-I derived from the circulation can influence fetal epiphyseal chondrogenesis, and that this may be modulated locally by multiple IGFBP expression.Key words: epiphyseal growth plate, insulin-like growth factor, insulin-like growth factor binding protein, chondrocyte, cartilage.
Read full abstract