Microglia-mediated inflammation plays an important role in the pathogenesis of several neurodegenerative diseases including Parkinson’s disease (PD). Recently, autophagy has been linked to the regulation of the inflammatory response. However, the potential role of microglial autophagy in the context of PD pathology has not been characterized. In the present study, we investigated whether impaired microglial autophagy would affect dopaminergic neurodegeneration and neuroinflammation both in vivo and in vitro. In vitro, BV2 microglial cells were exposed to LPS in the presence or absence of autophagy-related gene 5 (Atg5) small interference RNA (Atg5-siRNA). For in vivo study, microglial Atg5 conditional knockout (Atg5flox/flox; CX3CR1-Cre) mice and their wild-type littermates (Atg5flox/flox) were intraperitoneally injected with MPTP to induce experimental PD model. Our results revealed that disruption of autophagy by Atg5-siRNA aggravated LPS-induced inflammatory responses in BV2 cells and caused greater apoptosis in SH-SY5Y cells treated with BV2 conditioned medium. In mice, impaired autophagy in microglia exacerbated dopaminergic neuron loss in response to MPTP. The mechanism by which the deficiency of microglial autophagy promoted neuroinflammation and dopaminergic neurodegeneration was related to the regulation of NLRP3 inflammasome activation. These findings demonstrate that impairing microglial autophagy aggravates pro-inflammatory responses to LPS and exacerbates MPTP-induced neurodegeneration by modulating NLRP3 inflammasome responses. We anticipate that enhancing microglial autophagy may be a promising new therapeutic strategy for PD.
Read full abstract