Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes. Rats were subjected to unilateral anterior crossbite (UAC), which is inducible for degeneration of temporomandibular joint (TMJ) cartilage. Chondrocytes derived from rat TMJ cartilage were subjected to fluid flow shear stress (FFSS) and analyzed via LCMS/MS-based proteomics. The microtubule destabilization agent nocodazole and/or the microtubule stabilizer docetaxel were used in the UAC and FFSS models. In both FFSS- and UAC-treated chondrocytes, decreased acetylated α-Tubulin (ac-Tubulin) expression and LD accumulation were observed. Proteomic data revealed increased levels of the LD-associated protein perilipin 3 (Plin3) and decreased levels of cytoskeleton components in FFSS-treated chondrocytes. Live-cell imaging revealed that the colocalization of LDs with lysosomes was significantly decreased after FFSS treatment. Impairment of microtubules by nocodazole reduced the protein level of ac-Tubulin and disrupted the Hsc70-mediated interaction between Plin3 and Lamp2a, as shown by co-IP assays. In contrast, docetaxel reversed the suppression of ac-Tubulin expression, reduced the accumulation of LDs, and decreased the expression of Plin3 in chondrocytes exposed to FFSS and UAC, and docetaxel ameliorated UAC-induced osteoarthritic lesions in the TMJ cartilage. Microtubule impairment under aberrant stress conditions disrupts intracellular transport and blocks lipophagy, causing LD accumulation in chondrocytes. Microtubule stabilization could be a new approach for treating stress-induced cartilage degeneration.
Read full abstract