Sympathetic activation plays a critical role in the development of hypertension and cardiovascular disease, including heart failure and arrhythmias. Renal nerves contribute to the regulation of blood pressure and fluid volume through renal sympathetic efferent nerves, and to the modulation of sympathetic outflow through renal sensory afferent nerves. Previous studies including ours suggest that selective afferent renal denervation with preservation of efferent renal nerves can significantly decrease central sympathetic outflow in animal models of hypertension with renal damage. In Dahl salt-sensitive rats fed high salt diet from an early age, a model of hypertensive heart failure, this central sympathoinhibition by afferent renal denervation may attenuate the development of heart failure without significant blood pressure reduction. Accumulating clinical evidence supports the efficacy of renal denervation as an antihypertensive treatment. However, it remains important to clarify the appropriate indications and predictors of responders to renal denervation in the treatment of hypertension. Several clinical studies suggest beneficial effects of renal denervation in patients with heart disease, with or without hypertension, although most were not sham-controlled. In particular, some clinical studies have demonstrated that renal denervation reduces the incidence of atrial fibrillation or cardiovascular events even without a significant antihypertensive effect. It is essential to accumulate more insightful data in patients undergoing renal denervation, to establish the efficacy of renal denervation in patients with cardiovascular disease in the clinical setting, and to elucidate the therapeutic mechanisms of renal denervation and the renal nerves-linked pathophysiology of cardiovascular disease in basic research. This review outlines the effects of renal denervation on sympathetic activity and organ damage in animal models of hypertension and hypertensive heart failure, including our own data. Beyond the antihypertensive effects, the beneficial effects of renal denervation on cardiovascular disease are also discussed based on clinical studies. Several animal and clinical studies suggest the cardioprotective effects of renal denervation even in the absence of significant blood pressure reduction, probably due to its sympathoinhibitory effects.
Read full abstract