The human eye has a crystalline lens that focuses retinal images at the point of fixation. Outside this fixation region, images are distorted by optical blur, which increases light scatter and reduces the spatial resolution and contrast processed by neuronal pathways. The spectacle lenses that humans use for optical correction also minify or magnify the images, affecting neuronal surround suppression in visual processing. Because light and dark stimuli are processed with ON and OFF pathways that have different spatial resolution, contrast sensitivity and surround suppression, optical blur and image magnification should affect differently the two pathways and the perception of lights and darks. Our results provide support for this prediction in cats and humans. We demonstrate that optical blur expands ON receptive fields while shrinking OFF receptive fields, as expected from the expansion of light stimuli and shrinkage of dark stimuli with light scatter. Spectacle-induced image magnification also shrinks OFF more than ON receptive fields, as expected from the stronger surround suppression in OFF than ON pathways. Optical blur also decreases the population response of OFF more than ON pathways, consistent with the different effects of light scatter on dark and light stimuli and the ON-OFF pathway differences in contrast sensitivity. Based on these results, we conclude that optical blur and image magnification reduce the receptive field sizes and cortical responses of OFF more than ON pathways, making the ON-OFF response balance a reliable signal to optimize the size and quality of the retinal image.
Read full abstract