Abstract
PurposeThe guinea pig is widely used in studies of refractive error development and myopia which often involve experimental optical manipulations. The study described here investigated the optical quality of the guinea pig eye, for which there are limited data, despite its fundamental importance to understanding visually guided eye growth.MethodsThe ocular aberrations of eight adolescent New Zealand pigmented guinea pigs (6–11 weeks old) were measured after cycloplegia using a custom-built Shack–Hartmann aberrometer and fit with a Zernike polynomial function to the 10th order (65 terms). The optical quality of their eyes was assessed in terms of individual Zernike coefficients, and data were further analyzed to derive root-mean-square (RMS) wavefront errors, modulation transfer functions (MTFs), point spread functions (PSFs), Strehl ratios, and depth of focus. A 4-mm pupil was used in all computations. The derived data are compared with equivalent data from normal young adult human eyes.ResultsThe guinea pigs exhibited low hyperopia and a small amount of positive spherical aberration, with other aberration terms decreasing with increasing order. Their average depth of focus, estimated from through-focus modulation, was 3.75 diopters. The RMS wavefront error of the guinea pig eye was found to be larger than that of the human eye for the same pupil size, reflecting a higher degree of aberrations, although the PSF (area) on the retina was smaller and sharper due to its shorter focal length. The radial average best-focus MTF derived for the guinea pig eye showed good performance at very low spatial frequencies, with a steeper decline with increasing frequency than for the human eye, dropping below 0.3 at 9 cpd. When converted to linear units (cycles/mm), the guinea pig eye had a higher spatial frequency cutoff and a slight contrast advantage for low spatial frequencies compared to the human eye.ConclusionsThe optical quality of the guinea pig eye is far superior to their reported behavioral visual acuity. This implies a neuroanatomical limit to their vision, which contrasts with the close match of optical and neural limits to spatial resolution in human eyes. The significance for eye growth regulation of the relative optical advantages exhibited by guinea pig eyes, when optical quality is expressed in linear rather than angular retinal units, warrants further consideration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.