The plasma membrane contains the key elements for the control of coupling excitation to contraction in smooth muscle. The superficial calcium buffer barrier, initially proposed by van Breemen for vascular smooth muscle, may participate in the regulation of calcium entry in other smooth muscle types. To investigate the relationship between the sarcoplasmic reticulum (SR) and the plasma membrane in myometrial smooth muscle cells, we performed experiments using videofluorescence imaging and cell-attached electrophysiology. The cell-attached patch was used as a reporter for the free calcium in the subplasmalemmal space by monitoring openings of the Maxi-K channel. Calcium green-1 was used to simultaneously monitor changes of the deep cytosolic calcium con centrations. The cell with the patch attached was stimulated via an intercellular calcium wave from an adjacent cell. In this fashion, release of SR calcium was accomplished with minimal disturbance of the plasma membrane and the subplasmalemmal space of the cell studied. With physiological bathing solution, six of seven calcium waves activated Maxi-K channels. Surprisingly, the Maxi-K channels began opening 6.3 ± 4.7s (range 2.6–15.0s) after the wave passed the pipette location. When plasma membrane calcium fluxes were inhibited with 100μM lanthanum, no Maxi-K channel openings were observed in six of seven experiments. These results are best explained by a subplasmalemmal space in which the calcium concentration is largely controlled by store-operated channels. These results suggest the superficial buffer barrier as merely one aspect of subplasmalemmal regulation of calcium dynamics, and emphasize the importance of store-operated calcium channels during dynamic calcium changes.