In this research, we employ a full-range tail dependence copula to capture the intraday dynamic tail dependence patterns of 30 s log returns among stocks in the US market in the year of 2020, when the market experienced a significant sell-off and a rally thereafter. We also introduce a model-based unified tail dependence measure to directly model and compare various tail dependence patterns. Using regression analysis of the upper and lower tail dependence simultaneously, we have identified some interesting intraday tail dependence patterns, such as interactions between the upper and lower tail dependence over time among growth and value stocks and in different market regimes. Our results indicate that tail dependence tends to peak towards the end of the regular trading hours, and, counter-intuitively, upper tail dependence tends to be stronger than lower tail dependence for short-term returns during a market sell-off. Furthermore, we investigate how the Fama–French five factors affect the intraday tail dependence patterns and provide plausible explanations for the occurrence of these phenomena. Among these five factors, the market excess return plays the most important role, and our study suggests that when there is a moderate positive excess return, both the upper and lower tails tend to reach their lowest dependence levels.
Read full abstract