This work addresses the challenges of a decentralized and heterogeneous Unmanned Aerial Vehicle (UAV) swarm deployment – some fitted with multimedia sensors, while others armed with scalar sensors – in resource-constrained and challenging environments, typically associated with farming. Subsequently, we also address the resulting problem of sensing and processing resource-intensive data aerially within the Edge swarm in the fastest and most efficient manner possible. The heterogeneous nature of the Edge swarm results in under-utilization of the available computation resources due to unequal data generation within its members. To address this, we propose a Nash bargaining-based weighted intra-Edge processing offload scheme to mitigate the problem of heavy processing in some of the swarm members. We do this by distributing the data to be processed to all the swarm members. Real-life hardware tuned simulation of a large UAV swarm shows that by increasing the number of UAVs in the swarm, our scheme achieves better scalability and reduced processing delays for intensive processing tasks. Additionally, in comparison to regular star and mesh topologies, our scheme achieves an increase in collective available network processing speeds by 100% for only 25% of the number of UAVs in a star topology.
Read full abstract