In this paper, a new multi-sensor calibration approach, called iterative registration and fusion (IRF), is presented. The key idea of this approach is to use surfaces reconstructed from multiple point clouds to enhance the registration accuracy and robustness. It calibrates the relative position and orientation of the spatial coordinate systems among multiple sensors by iteratively registering the discrete 3D sensor data against an evolving reconstructed B-spline surface, which results from the Kalman filter-based multi-sensor data fusion. Upon each registration, the sensor data gets closer to the surface. Upon fusing the newly registered sensor data with the surface, the updated surface represents the sensor data more accurately. We prove that such an iterative registration and fusion process is guaranteed to converge. We further demonstrate in experiments that the IRF can result in more accurate and more stable calibration than many classical point cloud registration methods.