In response to the issues of slow convergence and the tendency to fall into local optima in traditional iterative closest point (ICP) point cloud registration algorithms, this study presents a fast registration algorithm for laser point clouds based on 3D scale-invariant feature transform (3D-SIFT) feature extraction. First, feature points are preliminarily extracted using a normal vector threshold; then, more high-quality feature points are extracted using the 3D-SIFT algorithm, effectively reducing the number of point cloud registrations. Based on the extracted feature points, a coarse registration of the point cloud is performed using the fast point feature histogram (FPFH) descriptor combined with the sample consensus initial alignment (SAC-IA) algorithm, followed by fine registration using the point-to-plane ICP algorithm with a symmetric target function. The experimental results show that this algorithm significantly improved the registration efficiency. Compared with the traditional SAC−IA+ICP algorithm, the registration accuracy of this algorithm increased by 29.55% in experiments on a public dataset, and the registration time was reduced by 81.01%. In experiments on actual collected data, the registration accuracy increased by 41.72%, and the registration time was reduced by 67.65%. The algorithm presented in this paper maintains a high registration accuracy while greatly reducing the registration speed.
Read full abstract