AbstractThe regiospecific reaction of 5‐vinyl‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (2) with HOX (X = Cl, Br, I) yielded the corresponding 5‐(1‐hydroxy‐2‐haloethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridines 3a‐c. Alternatively, reaction of 2 with iodine monochloride in aqueous acetonitrile also afforded 5‐(1‐hydroxy‐2‐iodoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (3c). Treatment of 5‐(1‐hydroxy‐2‐chloroethyl)‐ (3a) and 5‐(1‐hydroxy‐2‐bromoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (3b) with DAST (Et2NSF3) in methylene chloride at ‐40° gave the respective 5‐(1‐fluoro‐2‐chloroethyl)‐ (6a, 74%) and 5‐(1‐fluoro‐2‐bromoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (6b, 65%). In contrast, 5‐(1‐fluoro‐2‐iodoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (6e) could not be isolated due to its facile reaction with methanol, ethanol or water to yield the corresponding 5‐(1‐methoxy‐2‐iodoethyl)‐ (6c), 5‐(1‐ethoxy‐2‐iodoethyl)‐ (6d) and 5‐(1‐hydroxy‐2‐iodoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (3c). Treatment of 5‐(1‐hydroxy‐2‐chloroethyl)‐ (3a) and 5‐(1‐hydroxy‐2‐bromoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (3b) with thionyl chloride yielded the respective 5‐(1,2‐dichloroethyl)‐ (6f, 85%) and 5‐(1‐chloro‐2‐bromoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (6g, 50%), whereas a similar reaction employing the 5‐(1‐hydroxy‐2‐iodoethyl)‐ compound 3c afforded 5‐(1‐methoxy‐2‐iodoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (6c), possibly via the unstable 5‐(1‐chloro‐2‐iodoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine intermediate 6h. The 5‐(1‐bromo‐2‐chloroethyl)‐ (6i) and 5‐(1,2‐dibromoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (6j) could not be isolated due to their facile conversion to the corresponding 5‐(1‐ethoxy‐2‐chloroethyl)‐ (6k) and 5‐(1‐ethoxy‐2‐bromoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (61). Reaction of 5‐(1‐hydroxy‐2‐bromoethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (3b) with methanolic ammonia, to remove the 3′,5′‐di‐O‐acetyl groups, gave 2,3‐dihydro‐3‐hydroxy‐5‐(2′‐deoxy‐β‐D‐ribofuranosyl)‐furano[2,3‐d]pyrimidine‐6(5H)‐one (8). In contrast, a similar reaction of 5‐(1‐fluoro‐2‐chloroethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridine (6a) yielded (E)‐5‐(2‐chlorovinyl)‐2′‐deoxyuridine (1b, 23%) and 5‐(2′‐deoxy‐β‐D‐ribofuranosyl)furano[2,3‐d]pyrimidin‐6(5H)‐one (9, 13%). The mechanisms of the substitution and elimination reactions observed for these 5‐(1,2‐dihaloethyl)‐3′,5′‐di‐O‐acetyl‐2′‐deoxyuridines are described.
Read full abstract