Abstract The scattering of plasmons at a junction within a double-layer two-dimensional electron gas plasmonic waveguide is studied via a full electromagnetic method. The dispersion relation is derived by utilizing the transfer matrix method and can be extended to the situation of an arbitrary number of layers. By numerically solving the dispersion equations, both the acoustic and optical plasmon modes are identified in this double layer system, and the unstable plasmon modes arising from plasmon coupling in different layers are discussed elaborately. Subsequently, the total fields are expanded with eigenmodes and matched at the interface to analyze the scattering characteristics at the junction. The results indicate that the total power of the plasmon mode is amplified when the electron fluid flows from a high concentration region to a low concentration region, and the amplification is more evident at a higher drift velocity. Additionally, we address the scattering of unstable plasmons caused by the two-stream instability and find that the transmitted plasmons are excited intensively at the incidence of the growing plasmon, leading to the plasmon amplification. The detailed examination of plasmon scattering at junction is the prerequisite for studying more complex structures of terahertz plasmonic devices and comprehending the corresponding amplification mechanism.