The thalamus plays a central and dynamic role in information transmission and processing in the brain. Multiple studies reveal increasing association between schizophrenia and dysfunction of the thalamus, in particular the medial dorsal nucleus (MDN), and its projection targets. The medial dorsal thalamic connections to the prefrontal cortex are of particular interest, and explicit in vivo evidence of this connection in healthy humans is sparse. Additionally, recent neuroimaging evidence has demonstrated disconnection among a variety of cortical regions in schizophrenia, though the MDN thalamic prefrontal cortex network has not been extensively probed in schizophrenia. To this end, we have examined thalamo-anterior cingulate cortex connectivity using detection of low-frequency blood oxygen level dependence fluctuations (LFBF) during a resting-state paradigm. Eleven schizophrenic patients and 12 healthy control participants were enrolled in a study of brain thalamocortical connectivity. Resting-state data were collected, and seed-based connectivity analysis was performed to identify the thalamocortical network. First, we have shown there is MDN thalamocortical connectivity in healthy controls, thus demonstrating that LFBF analysis is a manner to probe the thalamocortical network. Additionally, we have found there is statistically significantly reduced thalamocortical connectivity in schizophrenics compared with matched healthy controls. We did not observe any significant difference in motor networks between groups. We have shown that the thalamocortical network is observable using resting-state connectivity in healthy controls and that this network is altered in schizophrenia. These data support a disruption model of the thalamocortical network and are consistent with a disconnection hypothesis of schizophrenia.
Read full abstract