We propose an efficient version of ensemble Hartree-Fock/density functional theory to calculate a set of two charge-transfer states for systems with odd-numbers of electrons. The approach does require definitions of donor/acceptor fragments; however, the approach is not very sensitive to such definitions-even in the limit of very strong electronic coupling. The key ansatz is that, by mandating that the vector space spanned by the active orbitals projects equally onto the donor and acceptor fragments, such a constraint eliminates all intra-molecular local excitations and makes it far easier to generate potential energy surfaces that are smooth over a wide region of configuration space. The method is fast, working with only two electron configurations, and should be useful for abinitio non-adiabatic dynamics in the near future.