In a recent paper (Sturm and others, 1995), a global seasonal snow-cover classification system was developed with each class defined by snow properties like grain-size and type. Here, characteristic bulk density vs time curves are assigned to three classes using snow-course data from Alaskan and Canadian sites. Within each class, curves have similar slopes and intercepts but between classes they are different. The relationship between slope, intercept and snow rheology has been investigated using a finite-difference model in which snow layers are assumed to behave as viscous fluids. Using observed slopes, the density-dependent compactive viscosity of each class has been determined. These are consistent with published values. Results indicate that load and load history are less important to the compaction behavior than grain and bond characteristics, snow temperature and wetness. The study suggests that differences in compaction behavior arise primarily from differences in rheology, the result of climatically controlled differences in the character of the snow. This finding explains why regional snow densities have been successfully predicted from air temperature and wind speed alone, without considering snow depth.