Abstract Skarn ores have recently been identified beneath the historically mined placer Sn deposit at Kanbauk of the Dawei region, southern Myanmar. A large-tonnage skarn ore reserve at Kanbauk is estimated to be over 100 million tonnes, with reported ore grades of 0.17% WO3, 0.26% Sn, and 15.4% CaF2, potentially making it one of the largest W-Sn skarn deposits in the Southeast Asian tin belt. The mineralized skarns lie between marbles to the east and metasediments of the Mergui Group to the west. The timing of the mineralization is unclear, and thus the genetic relationship with regional magmatic events is not known. We report laser ablation-inductively coupled plasma-mass spectrometry U-Pb ages of garnet and cassiterite from the mineralized skarns. Garnet grains from the massive prograde skarns are typically subhedral to euhedral and show both sector and oscillatory zoning. They have 15 to 23% andradite (Ad), 55 to 67% grossularite (Gr), and 16 to 30% pyralspite (Py) (Ad15-23Gr55-67Py16-30) and contain 0.08 to 306 ppm U with a lower intercept 206Pb/238U age of 56.0 ± 1.5 Ma. Cassiterite grains from retrograde veinlets are subhedral to anhedral and have U contents from 110 to 12,000 ppm with a lower intercept 206Pb/238U age of 54.2 ± 1.7 Ma. Garnet and cassiterite have ages consistent within error and can be taken to indicate the formation of the Kanbauk W-Sn(-F) skarn deposit at around 55 Ma. Together with published ages of primary Sn-W deposits in the Dawei region, our study confirms a westwardly younging trend of mineralization toward the coast and provides support for rollback of the Neo-Tethyan subducting slab since the Late Cretaceous, which is considered as the main mechanism for the regional, extensive Sn-W mineralization.