Pharmaceuticals and personal care products (PPCPs) are a group of emerging contaminants causing detrimental effects on aquatic living organisms even at low doses. To investigate the contamination characteristics and ecological risks of PPCPs in drains flowing into the Yellow River of Ningxia, 21 PPCPs were detected and analyzed using solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry in this study. All 21 targeted compounds were detected in the drains, with total concentrations ranging from 47.52 to 1 700.96 ng·L-1. Ciprofloxacin, acetaminophen, benzophenone-3, and diethyltoluamide were the more commonly detected compounds, with detection frequencies exceeding 80%. The five highest-concentration PPCPs were acetaminophen, diethyltoluamide, caffeine, benzophenone-3, and levofloxacin, with the maximum concentrations of 597.21, 563.23, 559.00, 477.28, and 473.07 ng·L-1, respectively. Spatial analysis showed that the pollution levels of PPCPs in the drains of the four cities were different, with average concentrations of ∑PPCPs in the order of Yinchuan>Shizuishan>Wuzhong>Zhongwei. The total concentration of PPCPs before flowing into the Yellow River ranged from 124.82 to 1 046.61 ng·L-1. Source analysis showed that livestock and poultry breeding wastewater was the primary source for sulfadiazine and oxytetracycline, whereas medical wastewater was the primary source for levofloxacin and ciprofloxacin. The primary sources of triclocarban and triclosan were domestic sewage and industrial wastewater, whereas the primary source of caffeine and diethyltoluamide was domestic sewage. The pollution of diciofenac, cimetidine, triclocarban, and triclosan in the drains was positively correlated with the regional population and economic development level. The ecological risk assessment indicated that levofloxacin, diclofenac, gemfibrozil, benzophenone-3, and triclocarban posed high risks to aquatic organisms in drains flowing into the Yellow River. It is worthwhile to consider the mixture risk of the PPCPs that exhibited high risk at most sampling sites.
Read full abstract