We developed a tree ring width chronology from 1797 to 2020 (224 years) for the northwestern foothills of the Greater Khingan Mountains (GKMs) in northeastern China using 51 tree ring sample cores from 24 Pinus sylvestris var. mongolica (PSM). Pearson’s correlation analysis was used to analyze the relationship between tree ring width and regional climate factors. The standardized chronology was positively associated with the minimum temperature (Tmin) in the previous May (r = 0.721, p < 0.01), indicating that this parameter was the main climatic factor limiting PSM growth in the region. We established a secure reconstruction equation for the May Tmin from 1797 to 2020. There were 31 warm and 43 cold years in the 224-year reconstructed temperature series, accounting for 13.8% and 19.2% of the total years, respectively. Warm periods were observed in 1820–1829, 1877–1898, 1947–1958, and 1991–2020, whereas cold periods occurred in 1820, 1829–1870, 1899–1927, 1934–1947, and 1960–1988. The observed temperature sequence was highly consistent with the reconstructed sequence from the tree rings, which verified the reliability of the reconstructed results. The spatial correlation analysis indicated that the reconstructed temperature sequence accurately represented the temperature changes in the northwestern foothills of the GKM and surrounding areas. Multi-window spectral analysis and wavelet analysis revealed significant periodic fluctuations from 2 to 6 years, 21.2 years, 48.5 years, and 102.2 years. These periodic variations may be related to the El Niño–Southern Oscillation (ENSO), the Atlantic Multi-Year Intergenerational Oscillation (AMO), the Pacific Decadal Oscillation (PDO), and solar activity. This study expands the existing climate records in the region and provides valuable data support for understanding climate change patterns in the GKM and the scientific predictions of future climate changes.
Read full abstract