BackgroundA traditionally prepared aqueous extract (= decoction) of Houttuynia cordata Thunb (Yu xing cao) (HC) is widely used in Traditional Chinese Medicine (TCM) to treat inflammatory disease. Previous chemical and biological studies on HC have mainly focused on organic extracts rather than the aqueous decoction, which is the traditional formulation. PurposeThe study aimed to investigate whether the chemical composition of HC aqueous decoction (HCD) varies with geographical sourcing, to investigate the mechanism of action of HCD, and to determine if chemical variation impacts on HCDs anti-inflammatory activity. MethodSixteen samples of HC were purchased from Sichuan, Hubei and Anhui provinces in the People's Republic of China (PRC) and were prepared by the traditional decoction method to yield their corresponding HCDs. A Quality Control (QC) sample was prepared by combining individual HCD extracts. HCDs were analysed by Nuclear Magnetic Resonance (NMR) and High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). The anti-inflammatory activities associated with intestinal barrier function of HCD were studied by tumor necrosis factor-α (TNF-α) activated Caco-2 monolayers in vitro and in vivo using Dextran Sulfate Sodium (DSS)-induced murine colitis. Proteins involved in inflammation, mRNA levels, disease severity scores, and histology involved in intestinal inflammation were analysed. ResultsHCD samples exhibited different chemical fingerprints and three regional outliers were identified by Principal Component Analysis (PCA). Fifteen phytochemical metabolites were identified and quantified. HCD showed in vitro anti-inflammatory activity, enhancing zonula occludens-1 (ZO-1), occludin, interleukin (IL)-10 and decreasing IL-1β, IL-6 and epidermal growth factor receptor (EGFR) via an EGFR-dependent mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathway. This beneficial effect on intestinal inflammation was also seen in the in vivo colitis model at a molecular level in colonic tissues. ConclusionThis study shows that the test HCDs were chemically different, resulting in different levels of activity on intestinal barrier function and inflammation. Moreover, a “Daodi” product showed the greatest biological activity in this study, thus validating the importance of the “Daodi” quality material in TCM and supporting the traditional used of HCD for the treatment of inflammation.