AbstractIn a broad variety of configurations in technology and industrial applications, the properties of liquid metal flows subjected to strong magnetic fields, are largely governed by the dynamics of coherent structures, known to settle several basic types, such as thin shear layers, forming near the walls or within the fluid domain, vortices extended along the field, or planar and round jets. In some cases, these structures are created by the design, like a submerged jet formed by a sudden expansion from the nozzle into a blanket channel, or jets formed behind some flow obstruction. In the other cases this may be due to instability and evolution of secondary structures, for example, descending and ascending jets appearing as a result of convective instability in blanket channels. In this study, we undertake an attempt to affect liquid metal flow via inlet disturbance formed by a simple rod placed along the magnetic induction lines. The disturbance can generate flat jets behind the rod and, furthermore, a sustainable flow of anisotropic vortical perturbations further downstream the flow. We seek to analyze the most important mechanisms of the flow dynamics and effects of magnetic field on the integral system properties of enhancing mixing, mass and heat transport for such flow. The most optimal regimes of vortex generation are found to be governed by the magnetic interaction parameter (Stuart number). The exact ratio of the optimal Stuart number is found to be in a range between 20 and 40, based on the channel double width as a characteristic size. The observed vortices attain quasi‐2D shape and exist at a length of dozens of duct calibers, being the strongest at higher flow rates. The obtained flow regimes and their turbulent properties are also found to resemble significant similarity to the results on quasi‐2D turbulence found in prior studies of channel and duct flows under spanwise magnetic field.
Read full abstract