We show that, as a consequence of the local Poincaré symmetry, gravity and matter fields have to be entangled, unless the overall action is carefully fine-tuned. First, we present a general argument, applicable to any particular theory of quantum gravity with matter, by performing the analysis in the abstract nonperturbative canonical framework, demonstrating the nonseparability of the scalar constraint, thus promoting the entangled states as the physical ones. Also, within the covariant framework, using a particular toy model, we show explicitly that the Hartle–Hawking state in the Regge model of quantum gravity is entangled. Our result is potentially relevant for the quantum-to-classical transition, taken within the framework of the decoherence programme: due to the gauge symmetry requirements, the matter does not decohere, it is by default decohered by gravity. Generically, entanglement is a consequence of interaction. This new entanglement could potentially, in form of an ‘effective interaction’, bring about corrections to the weak equivalence principle, further confirming that spacetime as a smooth four-dimensional manifold is an emergent phenomenon. Finally, the existence of the gauge-protected entanglement between gravity and matter could be seen as a criterion for a plausible theory of quantum gravity, and in the case of perturbative quantisation approaches, a confirmation of the persistence of the manifestly broken gauge symmetry.
Read full abstract