The constant need to reduce emissions in the automotive sector has driven the electrification of powertrain and chassis. To comply with this trend and decrease the bound even further, the present paper proposes the use of hydraulic regenerative shock absorbers for automotive suspension systems. The conversion of linear into angular motion and the suitable control of an integrated electric machine allow to transform part of the vibrational energy into electricity. In these damping devices, the key element is the motor-pump unit that is interfaced onto a conventional hydraulic cylinder architecture. Hence, the proposed research focuses on this component by investigating different design aspects in all the domains of interest. The objective is to optimize the energy conversion efficiency of the unit without affecting its damping control property. To give means of validation, a motor-pump prototype is built and experimentally characterized through a dedicated test rig.
Read full abstract