Cichorium intybus L. is an important vegetable crop used as salad (leaf form) and for the production of coffee substitutes (root form). At the same time these plants can also be used in biotechnologies for synthesis of pharmaceutical proteins. Here we report the possibility of high frequency Agrobacterium rhizogenes- or A. tumefaciens-mediated transformation of C. intybus L. for construction of transgenic "hairy" roots and plants. The used plasmids contained target human interferonifn-α2b gene, Mycobacterium tuberculosis ESAT6:Ag85B antigene esxA::fbpB(ΔTMD) fused gene and human telomerase reverse transcriptase h Tert gene. Using of nptII gene as a selective one was preferable to the bar gene for chicory. In this case the frequency of transgenic plants or "hairy" roots formation was significantly higher. Cultivation of explants on the medium with Basta in concentration 1-2 mg/l have led to plants death or to significant reduction of number of shoots formed. Frequency of "hairy" roots formation varied from 5.9 to 42.3% after A. rhizogenes-mediated transformation. Frequency of regeneration of transgenic plants varied from 10 to 86% after A. tumefaciens-mediated transformation. Both A. rhizogenes- and A. tumefaciens-mediated transformation frequency depended on the type of explants, roots or cotyledons, and vector used. Usage of A. tumefaciens carrying pCB064 plasmid (target esxA:fbpB(ΔTMD) fused gene and nptII selective gene) resulted in the most effective regeneration of transgenic plants with regeneration frequency up to 86%. In the case of chicory A. rhizogenes-mediated transformation the highest regeneration frequency up to 42.3% was demonstrated using p CB161 vector with ifn-α2b target gene and nptII selective gene.
Read full abstract