BackgroundSpinal cord injury (SCI) is a severe traumatic spinal condition with a poor prognosis. In this study, a scaffold called linearly ordered collagen aggregates (LOCAS) was created and loaded with induced pluripotent stem cells (iPSCs)-derived neural stem cells (NSCs) from human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) to treat SCI in a rat model.MethodsThe rats underwent a complete transection SCI resulting in a 3-mm break at either the T9 or T10 level of the spinal cord.ResultsScanning electron microscope analysis revealed a uniform pore structure on the coronal plane of the scaffold. The LOCAS had a porosity of 88.52% and a water absorption of 1161.67%. Its compressive modulus and stress were measured at 4.1 MPa and 205 kPa, respectively, with a degradation time of 10 weeks. After 12 weeks, rats in the LOCAS-iPSCs-NSCs group exhibited significantly higher BBB scores (8.6) compared to the LOCAS-iPSCs-NSCs group (5.6) and the Model group (4.2). The CatWalk analysis showed improved motion trajectory, regularity index (RI), and swing speed in the LOCAS-iPSCs-NSCs group compared to the other groups. Motor evoked potentials latency was lower and amplitude was higher in the LOCAS-iPSCs-NSCs group, indicating better neural function recovery. Histological analysis demonstrated enhanced neuronal differentiation of NSCs and nerve fiber regeneration promoted by LOCAS-iPSCs-NSCs, leading to improved motor function recovery in rats. The LOCAS scaffold facilitated ordered neurofilament extension and guided nerve regeneration.ConclusionsThe combination of LOCAS and iPSCs-NSCs demonstrated a positive therapeutic impact on motor function recovery and tissue repair in rats with SCI. This development offers a more resilient bionic microenvironment and presents novel possibilities for clinical SCI repair.