Due to the lack of blood vessels and nerves, the ability of cartilage to repair itself is limited, and the injury of articular cartilage urgently needs effective treatment. Currently, the limitation of clinical repair for cartilage defects is that it is difficult to form pure hyaline cartilage repair, and the source of cartilage tissue and cells is limited. To obtain high-purity regenerated hyaline cartilage, we proposed to construct an injectable hydrogel precursor by using human living hyaline cartilage graft (hLhCG) secreted by human chondrocytes as the dispersed phase and fibrinogen solution as the continuous phase, by double injection with thrombin, three-dimensional network hydrogel structure was formed under the action of thrombin to repair joint defects. The component phenotypes of hLhCG and biomechanical properties of composite gel scaffolds were verified. After 12 weeks of injection of the mixed phase at the defect site, the regenerated tissues are similar in composition to adjacent natural tissues and exhibit similar biomechanical properties. The phenotype of regenerated cartilage was verified, confirming the successful regeneration of hyaline cartilage.
Read full abstract