BackgroundThe epidemiology of CMV end-organ disease (EOD) after Hematopoietic Cell Transplant (HCT) in the era of preemptive therapy (PET) is defined. In contrast, less data exists on refractory and/or resistant (R/R) CMV. We report on 1) the incidence; 2) risk factors and outcomes of R/R CMV by 1-year post HCT.MethodsRetrospective review of 167 CMV seropositive (R+) recipients of first marrow or peripheral blood HCT from 1/2014 - 12/2017 managed by PET. Refractory CMV was defined as failure to achieve >1 log10 decrease in CMV viral load (VL) and having VL >1,000 IU/mL after ≥14 day of PET. Resistant CMV required genotypic confirmation of resistance mutation(s) in UL54 and/or UL97 genes. End organ disease (EOD) was defined by standard criteria. Patients (pts) were followed through 1-year post HCT and were categorized in two mutually exclusive groups as R/R and no R/R. Demographics, clinical characteristics and outcomes were extracted from medical records and hospital databases. Univariable and multivariable logistic models were used to identify risk factors for R/R CMV.ResultsOf 167 PET recipients, 91 (54.5%) received ex vivo T cell depleted (TCD) HCT; 40 (24.0%) had mismatched donor; and 26 (15.6%) had multiple myeloma. 66/167 (39.5%) pts developed refractory CMV (6 pts also had resistant CMV). Time from HCT to CMV viremia was shorter in R/R group: median (IQR) 21.5 (17.2-27.8) days compared to no R/R group: 26 (19-32) days (p=0.031). Maximum VL was higher for R/R compared to no R/R: median (IQR) 9,118 (2,849-18,456) and 868 (474-1,908), respectively (p< 0.001). In multivariable model, risk factors for R/R included TCD HCT (p< 0.0001) and higher VL at PET initiation (p=0.0002). In contrast, CMV seropositive donor (p=0.035) was protective (Figure 1). CMV EOD developed in 28.2% of R/R and 16.2% of no R/R groups (p=0.085) (Figure 2). Overall survival at 1 year was 59.1% for R/R compared to 83.1% for no R/R group (p=0.00027) (Figure 3).Figure 1. Adjusted odds ratio (OR) and 95% confidence interval (CI) from multivariable model evaluating risk factors of refractory/resistant (R/R) CMV. Figure 2. Cumulative incidence curves of CMV end-organ disease (EOD) at 1-year post HCT Figure 3. Kaplan-Meier survival curves of overall survival (OS) at 1-year post HCT Conclusion1) Refractory and/or resistant CMV occurred in 39,5% of PET recipients. 2) T-cell depletion and higher CMV VL at PET initiation were risk factors for R/R CMV in multivariable models. 3) R/R CMV was associated with more EOD and worse overall survival.Disclosures Sergio Giralt, MD, Amgen (Advisor or Review Panel member, Research Grant or Support, Served an advisory board for Amgen, Actinuum, Celgene, Johnson & Johnson, JAZZ pharmaceutical, Takeda, Novartis, KITE, and Spectrum pharma and has received research support from Amgen, Actinuum, Celgene, Johnson & Johnson, and Miltenyi, Takeda.) Miguel-Angel Perales, MD, Abbvie (Other Financial or Material Support, Honoraria from Abbvie, Bellicum, Celgene, Bristol-Myers Squibb, Incyte, Merck, Novartis, Nektar Therapeutics, Omeros, and Takeda.)ASTCT (Other Financial or Material Support, Volunteer member of the Board of Directors of American Society for Transplantation and Cellular Therapy (ASTCT), Be The Match (National Marrow Donor Program, NMDP), and the CIBMTR Cellular Immunotherapy Data Resource (CIDR) Committee)Cidara Therapeutics (Advisor or Review Panel member, Other Financial or Material Support, Serve on DSMBs for Cidara Therapeutics, Servier and Medigene, and the scientific advisory boards of MolMed and NexImmune.)Kite/Gilead (Research Grant or Support, Other Financial or Material Support, Received research support for clinical trials from Incyte, Kite/Gilead and Miltenyi Biotec.) Genovefa Papanicolaou, MD, Chimerix (Research Grant or Support)Merck&Co (Research Grant or Support, Investigator and received funding and consulting fees from Merck, Chimerix, Shire and Astellas)