We investigate the use of distributed Bragg reflectors (DBRs) within triple-junction solar cells (TJSC) for spectrum splitting photovoltaics. An optical model of a lattice-matched (LM) GaInP/GaInAs/Ge TJSC with intermediate DBR is developed, in good agreement with measured reflectance. By modifying the DBR layer number, composition and thickness to broaden the reflectance band, we show that a DBR can provide suitable 900–1050 nm reflectance for spectrum splitting from the LM TJSC to a Si cell, resulting in a more efficient 4-junction receiver. For better practicality and cost effectiveness, we propose that the buffer layers in metamorphic (MM) TJSCs could additionally function as a DBR for spectrum splitting applications. We propose several DBR designs to achieve a suitable spectrum-splitting reflectance band from MM TJSCs to a Si cell, again resulting in a more efficient 4-junction receiver. Finally, we show that our intermediate DBR approach to spectrum splitting has the advantage of a greatly reduced angle-of-incidence dependence compared to a discrete dielectric filter.