Historical tempera paints exposed to pollutant gases suffer chemical and mineralogical deterioration which manifests through physical changes. Knowledge about these changes is fundamental to develop strategies for preventive conservation of wall paintings. In this research, binary tempera mock-ups composed of calcite, gypsum or lead white mixed with a proteinaceous binder (i.e., egg yolk or rabbit glue) were exposed to an aging test by using SO2-rich atmosphere exposure to learn about the degradation mechanisms and forms related to the pigment–binder interaction. Reference (unaltered) and aged mock-ups were studied from a physical point of view, characterizing the morphological changes by using stereomicroscopy and profilometry, color variations by using spectrophotometry, gloss changes, and reflectance changes by using a hyperspectral camera. Also, mineralogical and chemical changes were studied by means of X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Egg-yolk-based paints showed higher chromatic changes than their counterparts made of rabbit glue binder. Also, sulfate and sulfite salts precipitated on the surface of the aged paints regardless of their binder, influencing the painting reflectance which subsequently increased. Egg-yolk-based mock-ups exhibited roughness increases while the rabbit-glue-based paints showed roughness reduction, with the exception of lead-white-based paints. Therefore, the important influence of the type of binder and the interaction between the binder and the pigment on the durability of tempera paints in atmospheres rich in SO2 was confirmed.
Read full abstract