The application of compressive sensing (CS) for imaging has been extensively investigated and the underlying mathematical principles are well understood. The theory of CS is motivated by the sparse nature of real-world signals and images, and provides a framework in which high-resolution information can be recovered from low-resolution measurements. This, in turn, enables hardware concepts that require much fewer detectors than a conventional sensor. For infrared imagers there is a significant potential impact on the cost and footprint of the sensor. When smaller focal plane arrays (FPAs) to obtain large images are allowed, large formats FPAs are unnecessary. From a hardware standpoint, this benefit is independent of the actual level of compression and effective data rate reduction, which depend on the choice of codes and information recovery algorithm. Toward this end, we used a CS testbed for mid-wave infrared (MWIR) to experimentally show that information at high spatial resolution can be successfully recovered from measurements made with a small FPA. We describe the highly parallel and scalable CS architecture of the testbed, and its implementation using a reflective spatial light modulator and a focal plane array with variable pixel sizes. We also discuss the impact of real-world devices and the effect of sensor calibration that must be addressed in practice. Finally, we present preliminary results of image reconstruction, which demonstrate the testbed operation. These results experimentally confirm that high-resolution spatial information (for tasks such as imaging and target detection) can be successfully recovered from low-resolution measurements. We also discuss the potential system-level benefits of CS for infrared imaging, and some of the challenges that must be addressed in future infrared CS imagers designs.