Life is not a beach for those animals that survive in the rough ecological conditions found in marine sandy beaches – and yet, microscopic animals thrive on them. We explore the drivers for meiofaunal diversity in beaches by analysing taxonomic and functional patterns of 348 flatworm communities across 116 reflective beaches in the western Mediterranean, totalling 152 species (61.2% new to science). First, we confirm that species richness does not differ between beach hydrodynamic levels (swash, shoaling and surf) but rather depends on the characteristics of each beach. Second, we demonstrate that species composition across those levels depends on the species traits, in addition to geographical and abiotic factors. Third, we highlight that the species functional space has a lower richness than expected and a lower redundancy in the wave‐exposed swash level compared to the shoaling and subtidal levels, suggesting a trait‐based ecological filtering. Finally, we show that those differences depend on the higher frequency of hydrodynamics‐related traits in the species of the swash level. Our results suggest that the rough hydrodynamic conditions in the swash level favour a unique combination of species traits, which might be linked to ecological speciation in flatworms but also in other interstitial animals.
Read full abstract