Three-dimensional (3D) transfer functions build the basis for a comprehensive characterization of optical imaging systems in the spatial frequency domain. Utilizing the projection-slice theorem, the 2D modulation transfer function of an incoherent imaging system can be derived from a 3D transfer function by integration with respect to the axial spatial frequency. For a diffraction limited microscope with homogeneous incoherent pupil illumination, the modulation transfer function equals the 2D autocorrelation function of a circular disc. However, until now to the best of our knowledge no 3D transfer function has been published, which exactly leads to the 2D modulation transfer function of a diffraction limited microscope in reflection mode. In this article, we derive a formula, which after integration with respect to the axial spatial frequency coordinate perfectly fits to the diffraction limited 2D modulation transfer function. The inverse three-dimensional Fourier transform of the 3D transfer function results in a complex-valued 3D point spread function, from which the depth of field, the lateral resolution and, in addition, the corresponding 3D point spread function of both, a conventional and an interference microscope, can beobtained.