We present an analysis of the XMM-Newton and Chandra X-ray data of the young Type Ia supernova remnant 0519-69.0 in the Large Magellanic Cloud. We used data from both the Chandra ACIS and XMM-Newton EPIC-MOS instruments, and high resolution X-ray spectra obtained with the XMM-Newton Reflection Grating Spectrometer. The Chandra data show that there is a radial stratification of oxygen, intermediate mass elements and iron, with the emission from more massive elements more toward the center. Using a deprojection technique we measure a forward shock radius of 4.0(3) pc and a reverse shock radius of 2.7(4) pc. We took the observed stratification of the shocked ejecta into account in the modeling of the X-ray spectra with multi-component NEI models, with the components corresponding to layers dominated by one or two elements. An additional component was added in order to represent the ISM, which mostly contributed to the continuum emission. This model fits the data well, and was also employed to characterize the spectra of distinct regions extracted from the Chandra data. From our spectral analysis we find that the fractional masses of shocked ejecta for the most abundant elements are: M(O)=32%, M(Si/S)=7%/5%, M(Ar+Ca)=1%, and M(Fe) = 55%. From the continuum component we derive a circumstellar density of nH= 2.4(2)/cm^3. This density, together with the measurements of the forward and reverse shock radii suggest an age of 450+/-200 yr,somewhat lower than, but consistent with the estimate based on the optical light echo (600+/-200 yr). From the RGS spectra we measured a Doppler broadening of sigma=1873+/-50 km/s, from implying a forward shock velocity of vS = 2770+/-500 km/s. We discuss the results in the context of single degenerate explosion models, using semi-analytical and numerical modeling, and compare the characteristics of 0519-69.0 with those of other Type Ia supernova remnants.