Computational models in FEAST-METAL U–Pu–Zr metallic fuel behavior code have been upgraded to improve fission gas, solid fission product swelling, and pore sintering behavior in a microstructure dependent form. First, fission gas bubble growth is modeled by selecting small and large bubble groups according to a fixed number of gas atoms per bubble group. Small bubbles nucleated at phase boundaries grow via gas migration and turn into large bubbles. Furthermore, bubble morphology for each phase structure is captured by selecting the number of atoms per bubble and the shape of the bubbles in a phase dependent form. The gas diffusion coefficients for the single gamma phase and effective dual (α+δ) and (β+γ) phase structures are modeled separately, using the activation energy of the corresponding phase structure. In this study, it is found that pressure sintering of the interconnected porosity in dual phases should be less effective than the reference model in order to match clad strain and fission gas release behavior. In addition to these improvements, a probabilistic approach is taken to verify the fission gas-swelling threshold at which interconnected porosity begins. This fracture problem is treated as a function of critical crack length formed via bubble coalescence. It was found that a 10% gas-swelling threshold is appropriate for a wide range of gas bubble sizes. The new version of FEAST-METAL predicts the burn-up, smear density, and axial variation of the clad hoop strain and fission gas release behavior satisfactorily for selected test pins under EBR-II conditions. The code is used to predict ultra-high burn-up U–Pu–6Zr vented metallic fuel behavior with HT9 cladding for fast breeder reactor applications for 20 years of irradiation. It is assumed that HT9 clad will retain its fracture toughness and creep properties for this simulation. It appears that the increased dose on the cladding, increased solid fission product swelling, and low operating fuel temperature requires lower fuel smear density (∼60%) in order to ensure acceptable clad hoop strain at high burn-up (∼35at.%). Furthermore, keeping the peak clad temperature below 550°C seems to control lanthanide migration and clad inner wastage at a reasonable level. Possible design concerns and improvements are discussed.
Read full abstract