Kim et al. (2021) gave a method to embed a given binary <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$[n,k]$ </tex-math></inline-formula> code <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathcal {C}\,\,(k = 3, 4)$ </tex-math></inline-formula> into a self-orthogonal code of the shortest length which has the same dimension <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> and minimum distance <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d' \ge d(\mathcal {C})$ </tex-math></inline-formula> . We extend this result by proposing a new method related to a special matrix, called the self-orthogonality matrix <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$SO_{k}$ </tex-math></inline-formula> , obtained by shortening a Reed-Muller code <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathcal R}(2,k)$ </tex-math></inline-formula> . Using this approach, we can extend binary linear codes to many optimal self-orthogonal codes of dimensions 5 and 6. Furthermore, we partially disprove the conjecture (Kim et al. (2021)) by showing that if <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$31 \le n \le 256$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n\equiv 14,22,29 \pmod {31}$ </tex-math></inline-formula> , then there exist optimal <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$[n], [5]$ </tex-math></inline-formula> codes which are self-orthogonal. We also construct optimal self-orthogonal <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$[n], [6]$ </tex-math></inline-formula> codes when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$41 \le n \le 256$ </tex-math></inline-formula> satisfies <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n \ne 46, 54, 61$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n \equiv \!\!\!\!\!/~7, 14, 22, 29, 38, 45, 53, 60 \pmod {63}$ </tex-math></inline-formula> .
Read full abstract