Three-dimensional printing has evolved into a cost-effective and accessible tool. In orthopedic surgery, creating patient-specific anatomical models and instrumentation improves visualization and surgical accuracy. In pediatric orthopedics, three-dimensional printing reduces operating time, radiation exposure, and blood loss by enhancing surgical efficacy. This review compares outcomes of three-dimensional printing-assisted surgeries with conventional surgeries for upper and lower extremity pediatric surgeries. A complete search of medical literature up to August 2023, using Ovid Medline, EMBASE, Scopus, Web of Science, and Cochrane Library was conducted in compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Broad search terms included "pediatrics," "orthopedic," and "3D-printing." Eligible studies were assessed for intraoperative time, blood loss, and fluoroscopy exposure. Out of 3299 initially identified articles, 14 articles met inclusion criteria. These studies included 409 pediatric patients, with ages averaging 9.51 years. The majority were retrospective studies (nine), with four prospective and one experimental study. Studies primarily utilized three-dimensional printing for navigation templates and implants. Results showed significant reductions in operative time, blood loss, and radiation exposure with three-dimensional printing. Complication occurrences were generally lower in three-dimensional printing surgeries, but there was no statistical significance. Three-dimensional printing is an emerging technology in the field of orthopedics, and it is primarily used for preoperative planning. For pediatric upper and lower extremity surgeries, three-dimensional printing leads to decreased operating room time, decreased intraoperative blood loss, and reduced radiation exposure. Other uses for three-dimensional printing include education, patient communication, the creation of patient-specific instrumentation and implants. Level III.