The aim of this study was to examine the effects of Antarctic krill oil (FJH-KO) in a rat model of monosodium iodoacetate (MIA) induced osteoarthritis. The effect of FJH-KO on the development and severity of MIA-induced osteoarthritis was assessed using hematoxylin and eosin (H&E) staining and micro-CT. The expression of PGE2, pro-inflammatory cytokines (IL-1β, TNF-α), and arthritics related genes in osteoarthritic rats in response to FJH-KO supplementation was investigated using real time PCR. FJH-KO supplementation in the arthritic rat model reduced tissue damage, cartilage degeneration, and reduced the MIA-induced irregularities in articular cartilage surface. Serum PGE2, IL-1β, IL-6, and TNF-α levels were higher in MIA treated animals, but these levels decreased upon FJH-KO supplementation. When FJH-KO was provided at a dose of 150 mg/kg b.w to MIA-treated animals, it significantly increased the mRNA expression of anabolic factors. The mRNA expression of catabolic factors was significantly decreased MIA-treated animals that were provided FJH-KO at a dose of 100 and 150 mg/kg b.w. Moreover, the mRNA expression of inflammatory mediators was significantly decreased MIA-treated animals supplemented with FJH-KO. These results suggest supplementation with FJH-KO ameliorates the irregularities in articular cartilage surface and improves the inflammatory response in the osteoarthritis. Thus, FJH-KO could serve as a potential therapeutic agent for osteoarthritis treatment.
Read full abstract