Intercropping of hyperaccumulators with crops is a promising measure to enhance phytoremediation without impeding agricultural production. A Cd-hyperaccumulator, Solanum nigrum L. (S. nigrum), was intercropped with upland rice in a pot and rhizo-box experiment with Cd-contaminated soil to evaluate the combined effects of intercropping and arbuscular mycorrhizal fungi on plant growth and Cd accumulation. The results showed that, compared with monoculture, the combined treatments markedly decreased Cd concentration in rice parts, with the lowest Cd concentration in brown rice (reducing by 64.5%). The spatial distribution of root surface area and DTPA-Cd in the rhizo-box indicated competitive Cd uptake by neighbouring S. nigrum. Moreover, the combined treatments reduced Nramp5 expression but increased HMA3 levels in rice roots, leading to lower bioaccumulation and transfer coefficients. Additionally, fewer secreted organic acids and a higher rhizosphere pH were observed in rice. Conversely, the combined treatments promoted biomass, root length, root surface area, and decreased the rhizosphere pH in S. nigrum, thus increasing the Cd accumulation. Although the intercropping system with AMF inoculation notably reduced rice yield, the land-use efficiency was higher. These results provided insights into the role of AMF in the upland rice/S. nigrum system and demonstrated an alternative system for Cd phytoremediation.